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CERTAIN VERSIONS OF THE FORMULATION OF PROBLEMS OF 
NON-LINEAR ELASTICITY IN TERMS OF STRESSES* 

S.Ia. Makovenko 

New versions of the formulation of static non-linear elasticity theory 
problems are elucidated in terms of stresses for materials with locally 
reversible state laws (for instance, for a semilinear John material /l/J, 
that reduce to the solution of nine equations in the Piola stress tensor 
component for six or three boundary conditions and three integral conditions. 
This paper is related to the investigations in /2--7/devoted to analogous 
problems of the mechanics of a solid linearly deformable body. Examples 
are presented of the realization of one of the versions. 

1. Traditional formulation of the problem in terms of stresses (Problem A). 
In a certain Lagrange system of coordinates let the defining relationships relating the Piola 
stress tensor P and the gradient of the position vector VR be given in the form 

Pij = P'j (OR) (P = P (VR)) 

and also let the following reversible relationships hold 

(VR)t] = Crj @‘I O’R = C (P)) (1.1) 

For a semilinear John material /l/ 

(1.2) 

where g,* are the metric tensor components of the undeformed medium, b,, are the components of 
the tensor (P.PT)-‘I..P, fl is the first invariant of the tensor (P.Pr)'l*, and p, v are constants 
of elasticity. 

Let the following equations of statics be given 

V,P'j + Kj =o (V.P$-K=O) (1.3) 

where k are given volume forces and boundary conditions of mixed type: the forces fdOldo or 

f, ("dead"loads) are given on the part o, of the body boundary, while on the other part 0) 
we are given the position vector R, 

(1.4) 

In addition, in the case of the action of adead load the Signorini integral compatibility 
condition must be satisfied /l/ 

SRxKdv+SRxf,do=O (1.5) 
D 0 

which expresses the fact that the principal moment of the external forces vanishes in the 
deformed state of the body. We will assume that all the functions introduced possess the 
smoothness needed to carry out the transformations employed. We shall also assume the pre- 
sence of a "natural", i.e., unstressed, state of the initial undistorted configuration of 
the body. Moreover, unless otherwise stated, we.will confine ourselves to the following dead 
loading: 

WV = K,dv, fd0 = f&o (1.6) 

and we will assume the dimensions of the elastic body to be finite. 
If the volume v occupied by the body prior to deformation is a simply-connected domain, 

the necessary and sufficient conditions for.the system of differential equations (1.1) to be 
integrable with respect to the component xi of the position vector R are the conditions that 
the non-symmetric tensor should vanish, viz. 
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l~gj = dyv,c,, (P) = 0 pi = v x c (P) = 0) (1.7) 

In this case, the position vector R can be expressed in terms of the Piola stress tensor 

R=R(qo) + [ &.c(P) (1.a) 

where qqO is the arc 
ary conditions (1.4) 

The traditional formulation of the static problem of the non-linear theory of elasticity 
in terms of stresses (ProblemA) is given by relationships (1.31, (1.7), (1.91, and (1.5). 

of integration with origin at an arbitrarily fixed point q. , and bound- 
can be written in the form 

Qi* I4 = fo’ (n*PIo, =u (1.9 

xiO')(o,=xP (RVVIO, =Ro) 

As in the linear formulation, the problem in terms of stresses turns out to be overdefined: 
nine components of the non-symmetric Piola stress tensor should satisfy the 12 equations (1.3) 
and (1.7) in general complexity. 

New modifications of the formulation of the problems in the non-linear theory of elastic- 
ity in terms of stresses, which are completely equivalent to the traditional formulation 
(Problem A) but free from the overdefinition properties of the system of governing equations 
are elucidated below. 

2. Method of combination equations (Problem B). Following /2-4/,we set 

,*= v,W + K* (a = v.P + K) 

b,= t,& (b = T.a) 

where T is an arbitrary non-degenerate tensor. 
As a-0 we evidently have b-+0 and conversely. 
Let us form the combination equations 

g”’ (gimVlb, + e’*“P, Cd,) = 0 (Vb + V x C = 0) 

(2.1) 

(2.2) 

Also, for points lying on the surface of an undeformed body, let 

uj 1, = 0 (a lo = 0) (2.3) 

The new formulation of the problem in terms of stresses (Problem B) is given by (2.21, 
(1.9), (1.5) and (2.3): nine Piola stress tensor components should satisfy nine equations 
(2.21, six boundary conditions (1.9) and (2.3), and condition (1.5). 

Theorem 1. Problem B is equivalent to Problem A. 
We apply the operation div to (2.2) . Taking into account that V.V X Cw 0, as well as 

(2.31, we obtain 

V*b = 0, b I0 = 0 (2.4) 

When (2.4) is satisfied b=O everywhere in the domain U. It is sufficient to prove this 
assertioninsome particular system of coordinates Cartesian, say. Then it will also be true 
inanyother allowable system of coordinates because of the invariance of the tensor relations. 
But all the components of the vector b are harmonic functions in a Cartesian system of coordin- 
ates, equal to zero on the contour o, and therefore, are everywhere equal to zero invbecause 
of the properties of harmonic functions. Consequently a'.~0 everywhere in v also. It now 
follows from (2.2) that Iw'*= 0. Thus, satisfaction of the conditions of Problem B results 
in identical satisfaction of the conditions of Problem A. 

The converse assertion also holds. Indeed 

a=O+b=OdVb=O 

and together with (1.71, (2.2) and (2.3) of Problem B are satisfied identically. The theorem 
is proved. 

3. Method of weakened strain tiompatibility conditions (Problem B). Here 
and henceforth, let the domain v be a hexahedron bounded by the coordinate surfaces q’=c’ f hi, 
where q’=ce’ are mean surfaces of the domain v, and hi are arbitrary parameters character- 
izing the dimensions of the domain v. (An arbitrary simply-connected domain with smooth 
boundaries can always be inscribed in a coordinate hexahedron, and a function given in v can 
be predetermined therein in a continuous manner /8/j. 

Everywhere in the domain v let 

M'2 = J//2' = MZS = M" = M'S = M3f = 0 (3.1) 
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and suppose the remaining components M", Maa, MS vanish only an individual fixed coordinate 

surfaces, namely 
M"=O on q’ = c’ (1, 2, 3) (3.2) 

A new modification of the formulation of the problem in terms of stresses (Problem B) is 
given by (1.3), (3.11, (1.9), (3.21, (1.5). 

Theorem 2. Problem B is equivalent to Problem A. 
It is obviously sufficient to prove that conditions (3.11, (3.2) are equivalent to condi- 

tions (1.7). Indeed, the components Mij of the tensor M = V X C(P) are only conditionally 
independent, being related by the three differential equations 

ViMij=O (V.M=V.Cx C(P)sO) (3.3) 

Taking (3.1) into account we can convert (3.3) to the form 

a,mii + rll*m*l + rz$rn2* + rya1ms3 = 0 (1, 2, 3) 

( 
a, _-a..., mii 

” . . - &l’ 
=1/F@, g=det[gij]>O) 

where rkli are Christoffel symbols of the second kind. 
According to conditions (3.2) 

(3.4) 

ml' = 0, ql= c’ (I, 2, 3) (3.5) 

We have arrived at a homogeneous Cauchy problem (3.4) and (3.5) which has the obvious 
trivial solution 

mii s m** z m33 s 0 (3.6) 

everywhere in v. 
If the coefficients I'jj* have the property of continuity in the domain <u, the trivial 

solution (3.6) will be unique in v. 
Let us prove this. To this end we replace (3.4) and (3.5) by an equivalent system of 

homogeneous Volterra integral equations of the second kind 

,*i+‘i i rj;mjj4*r0 
,f j-1 

We consider the first quadrant U, of the domain v: 

", = (q’ : ci < qi < 2 + h’, i = 1, 2, 3) 
We assume that together with the trivial solution (3.6), 

solution mi( exists that also satisfies (3.7). In this case, 
quantity 

m = c1 1 t7P 1-t rr, 1 m*= I + aa 1 m= I 

(ai > 0 are dimensional coefficients) takes the maximum value 
Let us consider 

(3.7) 

a non-trivial sufficiently smooth 
at a certain point qoiE u1 the 

m070. 

Therefore, there should be 1 <h which is impossible because of the arbitrariness of h. 
This contradiction proves the uniqueness of the trivial solution (3.6) in the first 

quadrant ul. 
The uniqueness of the solution (3.6) in the remaining quadrants of the domain visproved 

analogously. 
In the Cartesian coordinate system Pjji~O~mm"~O everywhere in u, in agreement with 

(3.7), the domain u can here be unbounded also. 
Thus, conditions (3.1) and (3.2) are equivalent to conditions (1.7). The theorem is 

proved. 
Conditions (3.1) (fundamental) and (3.2) (additional) are one of the modifications of 

weakened strain compatibility conditions. We have just 27 such modifications equivalent to 
one other. Combinations of the components M 'j corresponding to an additional group of cond- 
itions of certain modifications are presented in the table. The missing combinations are 
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obtained from those in the table by cyclic permutation of the superscripts. Six of the nine 
components of M'j not in the additional graup are in the fundamental group of conditkons of 
the same modi.fications. 

It can be shown in the same way that all the weakened strain compatibility conditions 
obtained in this manner are equivalent to conditions (1.7). 

4. 
r>. 

Method of integra-differential strain compatibility conditions(problem 
Consider the relations 

aixj - rijPX/f = Ci j (P) (OR m C(P)) (4.1) 

We take any three of the nine equations, which is a system integrable with respect to XI 

&,xm-$$+- - C*&P) @Em-%* 2, 3; ffs,EEEit* 2, 31) f4.21 

which contains 27 different modifications depending on the combinations of values af the sub- 
scripts sm. . 

We integrate (4.2) with respect to Xm , or equivalently, we find the solution of a system 
of integral equations of the form 

- Gn*xVa =1Pm t t 

;:~...=~~~m...d+, *&=$k,,(PJdF"nj 

(4.3) 

e&m cam 

where 5n ‘=: xm I**,,*, are axbitrary two-dimensional functions defined on a fixed surface q’m== 

We represent (4.3) as the operator equation 

(I - L).R=$ i_ 5 

R=col (Xl, XI1 XA 9= co1 WXI 9Sl h) 
ri, = co1 (51. FI, Cl), L - 1 * = II h"... n?i,nr=1,n.3 

The space of continuous functions in the domain 1) is denoted by i?, by introducing 
nmni 

II 28 II, = maxIul D 

in this set. 
Correspondingly, we define the vector functional space C, with the norm 

We set 
c?mi E G,, R, ** Q E et; 

in the problem under consideration. 
If the domain of definition of the operator Lis the set C,, the domain of values 

(4.41 

the 

will 
evidently be the set of elements ~=L&EC,,, i.e., the operator L maps C,into itself. 

It can be confirmed that the operator L is linear and continuous in C,, and its norm 
allows the obvious estimate. 

from which it can be seen that the norm depends on the dimensions of the domain V, We con- 

strain these dimensions in such a way that the following condition is satisfied: 
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qci (4.5) 

Condition (4.5) ensures the existence of the operator (I - L)-'=B which is the inverse 
of the operator I - L and is representable in the form /9/ 

B=zL' (4.6) 
hIO 

where the operator 8, like L, is also linear and continuous in C,. 

The existence of the inverse operator B ensures that the solution of the operator equa- 
tion (4.4) is unique, that it depends continuously on the given vector function $ and the 
arbitrary function 6 , and that it can be represented in conformity with (4.6) in the form 

R=B4~+6)=k$Lk+&+ 6) 

or written in component-by-component form 

= &In ($I + 6,); 
Emn... = Smn... + I,“... + l,‘li”.*. + lmiI~jl”j~~~+*~~) 

(4.7) 

Substituting (4.7) into (4-l), we obtain the strain continuity condition in terms of 
stresses in the integro-differential form 

(a,Lj”..* - r*jkLkn***)($* + 5,) = clj (‘) (4.8) 

((i, i) # (smr m)) 

Conditions (4.8) can obviously be interpreted as the conditions for (4.1) to be solvable 
in the form (4.7). 

The new modification of the problem in non-linear elasticity theory in terms of stresses 
(problem r) is given by (1.3), (4.8), (1.9) and (1.5). 

Theorem 3. Problem r is equivalent to Problem A. 
The equivalence of conditions (4.8) and conditions (1.7) must be proved as well as the 

identity of representations (1.8) and (4.7) of the position vector R(P). We temporarily 
denote the vectors (1.8) and (4.7) by Rn and &, respectively. 

Suppose we know that conditions (4.8) are satisfied, i.e., VRrsC(P). Then 

v x PIRr,EV x C(P)sO. 

Setting qO = (ci, cp, cs) we have 

RA-R(q,)+j dr.VRr:~RRr 
9. 

which it was required to prove. 

Theorem 4. The strain integro-differential compatibility conditions of the form (4.8) 
are a corollary of the variational principle of the stationarity of complementary work. 

According to the principle of the stationarity of complementary work /lo/, the quantity 
called complementary work has a stationary value in an actually realizable equilibrium state, 
written in the form 

S6P..CT(P)dV-SS.6P.%do=O 
" 01 

(4.9) 

Statically possible states of stress are subjected to comparison, consequently 

0 
V.6PE0, n.6P= 

i 
on 0% 

61 
0 on 01 

(4.10) 

Relying on conditions (4.10) and on the well-known formula for converting a volume into 
a surface integral, we can verify the validity of the relationship 

+pl..(cT(P)-VR;)+6P..VR;)dv + S&.Rrdo=O (4.11) 
01 
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where ri is the vector basis of the v-configuration. 
Combining (4.9) and (4.11) and equating the factors in the integrands to zer0 for arbi- 

traryaridindependent variations 6P - SP, and 6f,, we arrive at the strain continuity condition 
C(P)- VRr=O and the kinematic boundary condition (RF-R,,)I.,=O. The theorem is proved. 

5. Examples of representations of Problem r. Axisymmetric strain of a solid of 
revolution. We select the cylindrical coordinates 

cl (g) a 91 < d' (p), 0 =G q2 < 2n, cs f ? B d3 
as material coordinates by superposing the dJ axis on the axis of the solid of revolution. 

In the case under consideration 

pii = pV (*I, $), plr = pel = pm = ps2 = (J 

In Conformity with (1.2), we obtain 

c, =$+&c*sa, ci, 

P' 
C,, = 2p --bsinu, Cla = Ctl = C,, = C!S = 0 

b=i- 2p(iy+V) (q-1-W%?) 

q = [(P" + pa)% + (PlJ - psl)2]'la 

g2, = 8, 

PIi+-Pm p-pa1 

coSa =P t 
sin a = - 

P 

The equilibrium equations (1.3) and the strain continuity (4.8) for sI = O, = tp= 3 
transformed to the form 

I,&'"+ a,P" - q'p=+ K1 = 0 

bSP""+IIP"+KJ=O l,...ra,...;+ 
( > 

a,x, = Cl,, 4Xs = Grv Q'X = cm 

where 

x1= t-l-f G,dP, 

9' 

xz =o, xt=55+ C,W 
s 

C' c* 

When the surface forces f(f,) are given we append the boundary conditions 

are 

(5.3) 

(5.4) 

(5.5) 

. do 
rbiPZJ 10 = f’ do (=fo’) (5,;= f,3) 

to equations (5.3) and (5.4). 

(5.6) 

If the state of Stress is not accompanied by rotations (a=o), and there are no mass forces 
(K' = K'= O), the solution of the system of equations (5.3) and (5.4) can be expressedinterms 

(5.1) 

(5.2) 

of the'harmonic function 

W& 

Xl = w + + I X3 = a39 + Cl (93 - c3) + a 

c = I+v+(i--v)d 1+v-VYd 
1 i-v ’ c, = 

l-v ’ 

a, b, d = con&) 

In particular, setting 9 = t($-cs)- a$- tg& ('= const), we arrive at the well-known solu- 
tion obtained for a hollow cylinder by the method of displacements /l/. 

Plane strain of a prismatic body. We select the Cartesian coordinates qlrqzrq3 of the 
reference configuration (c'< qi<di) as material coordinates. 

Keeping the same scheme of representing the Problem r as in the preceding example, we 
arrive at relationships that are completely analogous to (S-l)-(5.6) with the sole difference 
that now it should be considered everywhere that g19=i,11.-.~dl..,, the term q'P2S should be 
discarded in the first equilibrium equation, the third equation in (5.4) should be replaced 
by Clt=C=COs&, and we put t= cqa in (5.5). 

The solution of (5.3) and (5.4) is represented in the case under consideration when there 
are no ma5s forces by 



x1 = a,* + f. x3 = -a,* - @ 
where + is a harmonic function and the functions UJ and f should satisfy the equations 

a,4, - aj = q cos d2~ 

a,@ + af = p sin al2p 

-!L= vc-I-v+q* WC 44J: 
2P I-V ' COSOL = - -, 9* 

sina---_- 
-4 9* 

(5.7) 

System (5.7) obtained is identical with the corresponding complex equation of the method 
of displacements /l/. 

Three-dimensional strain of thick slabs. We refer the medium occupied by the slab to a 
Cartesian system of coordinates (q'E,i). The equilibrium (1.3), and the strain continuity 
equations (4.8) for tm==3,c6m=0, the displacement formulas (4.7) , and the equations of state 
for the semilinear material form the initial system 

a@ + Kj = 0, cm1 = Bmxt (5.8) 

Xj~6jf5(c,jdCs (m = 1,2; j = 1.2.3) 
0 

. 
P'I S- - % I-2v ]( i - 2V)Cij + (VC - i -vu)aij -I- F,j] 

Fij = (1 + V) (6ij - Qij) + v (JzQij - c6ij) 

C = C,, + C, + G, 

where 6il is the Kronecker delta, I, is the first invariant of the tensor (C .c~)'/~,o,, are compon- 
ents of the rotation tensor (C.CT)'/*.C, and t = 61 (%, %) are arbitrary two-dimensional func- 
tions. 

In the case of conservation of the principal directions of the tensor of the Cauchystrain 
measures cr,,z 611, C E II. and FilSO. Hence, the functions Pi) are components of the correct- 
ing tensor. 

We will determine pit by the method of successive approximations, thereby linearizing the 
problem. 

In turn, we will solve the linear problem by the method of "initial functions" by reduc- 
ing the three-dimensional problem to a two-dimensional one. 

Using Lur'e's symbolic method /ll/, we introduce the following notation for the operators 
a,. . . ~:(1, a%... s p, a,'. . + a,¶. . . e y. 

Let 

Pj = eF,j + fJFu + B,F,, + Kj (1 - 2v)/(2~) 

be the reduced volume load, and G,. C,, G, resolving functions. We convert the initial equa- 
tions (5.8) to a system of three governing equations 

5'KL - v)PG1 +vB (eC,z- Wdl tis + va (cm + I%) + (5.9) 
0 

We introduce the following transcendental operators 

o1 = sin yz,, 4 = Cosyz, 

il (. . .) = 7 (23 - fs) sin v (zl - Es) (. . .)d& 
0 

il(...)=S’(q-Es)cOSy(r*--fJ)(...)~~ 

0 

” XI 

i, (. . .) = 1 sin y (zs- ES) (. ; .)dE, 
0 
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form 

2. 

i,(...)=. cosv(+-&)(...)& s 
0 

The particular solution of the homogeneous system of equations (5.9) (for pj = I)) has the 

where of z &J lIro 

Now setting 
(5.9) 

ew 
Cd = %GJ - w152 - 2 (, _ Zv) 

MJW 
2(1-V)'/ 

. _ , c 
c&J = o$5g - ~;o& - 2 (yrv, + * 

(0 = 03 + a61 + PC,, 5 = au, + t?q - v*cs) 

are arbitrary two-dimensional functions. 
uj = c, = 0, we arrive at the particular solution of the inhomogeneous system 

(I- 2v)C,1* = - ip(P1)+ & [i,(P) +vi2(&) + i3(&)] 

VB 
(1 7 W C3%* = - i4 Wd + 2 ti _ v) y - [h(P) + Yh Ps) f i3 &)I 

(I- VI C,* = - i4 US) + -q&j [ - VI P.3) + i2 U9 + + h PI 

(P = ap, + B9). 

The two-dimensional functions &,o, (the initial 
boundary conditions pd=fi or ~1 = up on I$ = 0, h,. 
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